If it's not what You are looking for type in the equation solver your own equation and let us solve it.
63n^2+33n-120=0
a = 63; b = 33; c = -120;
Δ = b2-4ac
Δ = 332-4·63·(-120)
Δ = 31329
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{31329}=177$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-177}{2*63}=\frac{-210}{126} =-1+2/3 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+177}{2*63}=\frac{144}{126} =1+1/7 $
| 6n+84=138 | | 2/3x+17/3=-1 | | 2/3x2-5/3x=x-1 | | 20+6x=50-4 | | -3/4x=-5/8+1/3x | | r*8=256 | | 2x=20+2=180 | | 7(t-3)=45-3(45+t) | | -9z=8 | | 8^(3x+1)=32 | | ((-x)^2+36x-324)^2=0 | | -6x-3=3x+12+3/4 | | 10(x+5)^9=0 | | 4^2x-3-6=-2 | | 5x-20+7x+80=180 | | 4x-13+19=-36 | | 2x=(3x-12)+(4+9) | | h2–8h+7=0 | | -0.5(2-8x)=30 | | 2x=(3x-12)+(4x+9) | | 0.2(x+10)=5x+25 | | x3=-19 | | −44=−8x+4 | | 3x-x^2=-39 | | 32=3+5x | | 30x=-36 | | 3-v/4=-27 | | 2q+4q+-7q-4q=20 | | -5(x-2)=7+3(2x-4) | | 17(x)=4x-1(4) | | 20+3(x)=90 | | -24b-12=-24-6b |